Mediator Complex Subunit MED1 Protein Expression Is Decreased during Bladder Cancer Progression
نویسندگان
چکیده
INTRODUCTION Bladder cancer (BCa) is among the most frequent cancer entities and relevantly contributes to cancer-associated deaths worldwide. The multi-protein Mediator complex is a central regulator of the transcriptional machinery of protein-coding genes and has been described to be altered in several malignancies. MED1, a subunit of the tail module, was described to negatively modulate expression of metastasis-related genes and to be downregulated in melanoma and lung cancer. In contrast, MED1 hyperactivity was described in breast and prostate cancer, likely due its function as a hub for nuclear hormone receptors. So far, only little is known about the function of the Mediator complex in BCa. The aim of this study was therefore to investigate the role of MED1 in BCa as a prognostic biomarker and a biomarker of disease progression. METHODS The protein expression of MED1 was assessed by immunohistochemistry (IHC) on tissue microarrays from 224 patients: benign urothelium n = 31, non-muscle invasive BCa (pTis, pT1) n = 72, and muscle invasive BCa (pT2-T4) n = 121. Comprehensive clinicopathological information including follow-up were available. Quantification of MED1 protein expression was evaluated by the semiquantitative image analysis program Definiens. RESULTS MED1 expression significantly decreased during BCa progression from benign urothelium to advanced BCa. Muscle invasion, the crucial step in BCa progression, was associated with low MED1 protein expression. Accordingly, decreased MED1 expression was found in primary BCa samples with positive lymphonodal status and distant metastases. Furthermore, cancer-specific survival was significantly worse in the group of low MED1 expression. CONCLUSION Our findings show that the downregulation of MED1 is associated with muscle invasion, metastatic spread, and shorter overall survival in BCa.
منابع مشابه
A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression.
Androgen receptor (AR) signaling pathways are important for the survival and proliferation of prostate cancer cells. Because AR activity is facilitated by distinct coregulatory factors and complexes, it is conceivable that some of these proteins might also play a role in promoting prostate oncogenesis. The multisubunit Mediator complex is an important coactivator for a broad range of regulatory...
متن کاملThe Mediator subunit MED1/TRAP220 is required for optimal glucocorticoid receptor-mediated transcription activation
The MED1/TRAP220 subunit of the Mediator plays a key role in facilitating ligand-dependent interactions of this multisubunit coactivator complex with nuclear receptors through their ligand binding domains. The isolated MED1/TRAP220 protein previously was shown to interact with glucocorticoid receptor (GR) in a ligand-dependent manner. However, the functional role of MED1/TRAP220, within the con...
متن کاملMed1 plays a critical role in the development of tamoxifen resistance.
Understanding the molecular pathways that contribute to the development of tamoxifen resistance is a critical research priority as acquired tamoxifen resistance is the principal cause of poor prognosis and death of patients with originally good prognosis hormone-responsive breast tumors. In this report, we provide evidence that Med1, an important subunit of mediator coactivator complex, is spon...
متن کاملSpecific erythroid-lineage defect in mice conditionally deficient for Mediator subunit Med1.
The Mediator complex forms the bridge between transcriptional activators and the RNA polymerase II. Med1 (also known as PBP or TRAP220) is a key component of Mediator that interacts with nuclear hormone receptors and GATA transcription factors. Here, we show dynamic recruitment of GATA-1, TFIIB, Mediator, and RNA polymerase II to the β-globin locus in induced mouse erythroid leukemia cells and ...
متن کاملAlternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression.
Mediator is a general coactivator complex connecting transcription activators and RNA polymerase II. Recent work has shown that the nuclear receptor-interacting MED1/TRAP220 subunit of Mediator is required for peroxisome proliferator-activated receptor gamma (PPARgamma)-stimulated adipogenesis of mouse embryonic fibroblasts (MEFs). However, the molecular mechanisms remain undefined. Here, we sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2017